
2690 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 12, DECEMBER 2002

Approximate Analytical Evaluation of the Continuous
Spectrum in a Substrate–Superstrate

Dielectric Waveguide
Paolo Baccarelli, Member, IEEE, Paolo Burghignoli, Member, IEEE, Fabrizio Frezza, Senior Member, IEEE,

Alessandro Galli, Member, IEEE, Giampiero Lovat, Student Member, IEEE, and David R. Jackson, Fellow, IEEE

Abstract—In this paper, an original closed-form approximate
evaluation is performed for the continuous-spectrum field excited
by an infinite line source in a dielectric substrate–superstrate
configuration, optimized for leaky-wave radiation. By means
of a suitable approximate asymptotic representation obtained
via Watson’s lemma, the continuous-spectrum field has been
expressed as the sum of the contributions of two leaky-pole
singularities, each weighted by a transition function that depends
on both the frequency and observation distance. The validity of
these results is shown in the near and far fields at different fre-
quencies, including the frequency range in which the leaky wave
is physical and the entire transition region through the spectral
gap. This new closed-form result explicitly shows the nature of the
continuous-spectrum field in the transition region, and provides
insight into the nature of the fields on more complicated structures
in microwave integrated circuits.

Index Terms—Continuous spectrum, dielectric waveguides,
leaky waves (LWs), transition regions.

I. INTRODUCTION AND BACKGROUND

A S IS KNOWN, radiation due to sources in the presence
of open waveguides can be described in terms of the con-

tinuous part of the modal spectrum of the relevant transverse
operator (see, e.g., [1]–[4]). Such a description is exact, but re-
quires the numerical determination of the continuous-spectrum
modes, which is a quite cumbersome task.

In many cases, the exact modal representation can be conve-
niently replaced by an approximate one in terms of leaky waves
(LWs), i.e., modal solutions with a complex propagation con-
stant that propagate and simultaneously leak energy through
waves supported by the background environment of the wave-
guide (e.g., plane waves in free space or surface waves in a
planar-stratified structure). Such leaky modes do not satisfy the
radiation conditions at infinity in the waveguide transverse cross
section; nevertheless, when a leaky mode is physical, its field
can give an accurate representation of the continuous-spectrum
field excited by a given source [5]–[8].

The part of the continuous spectrum that is not represented
by the LW field, termed theresidual wave(RW) in [9], has re-
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cently been studied for the three-dimensional case of a stripline
excited by a gap source in [10]. The residual-wave contribution
to the field typically becomes strong in the neighborhood of the
transition region, where the leaky mode evolves from a phys-
ical to nonphysical mode [11], [12]. As the leaky mode moves
into the nonphysical region, the degree of correlation between
the LW field and continuous-spectrum field gradually decreases
[13]. A quantitative description is sought for this progressive
loss of physical significance of a leaky mode; thus far, empir-
ical weighting functions have been proposed, based on power
considerations [14], but, to our knowledge, no analytically de-
rived results are as yet available.

In this paper, we consider a simple two-dimensional configu-
ration, i.e., a substrate–superstrate dielectric waveguide excited
by an infinite line source and optimized for LW radiation [15],
[16]. This structure is chosen for its simplicity. However, the
conclusions obtained are expected to be valid for more compli-
cated structures such as sources on microwave-integrated-cir-
cuit lines. Hence, the analysis and results presented here should
provide insight into the nature of the continuous-spectrum ra-
diation at high frequencies on practical integrated-circuit lines,
which is often responsible for undesirable spurious effects.

By means of an asymptotic evaluation performed via
Watson’s lemma [17], we present an approximate closed-form
expression for the residual-wave field on the air–dielectric
interface, which leads to a closed-form expression for the
continuous-spectrum field in terms of the contribution oftwo
poles of the spectral Green’s function, each weighted by an
appropriate transition function. The results thus obtained,
reported here for both the near and far fields, explicitly show
the nature of the continuous-spectrum field in the neighborhood
of the transition region of the substrate–superstrate dielectric
waveguide.

This paper is organized as follows. In Section II, the analyt-
ical derivation of the approximate closed-form expression for
the RW is derived for a substrate–superstrate dielectric wave-
guide excited by an electric line source and optimized for TE
LW radiation. In Section III, the results thus obtained are used
to derive an approximate representation of the continuous-spec-
trum field in terms of two weighted LW pole contributions. In
Section IV, numerical results are presented for both the aperture
and radiated far fields, and a comparison is presented with the
results obtained through the use of the empirical transition func-
tion of [14]. Finally, in Section V, conclusions are presented.
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Fig. 1. Substrate–superstrate configuration treated here, excited by an infinite
line source that may be electric(J ) or magnetic(M ).

II. A PPROXIMATEEVALUATION OF THE RESIDUAL-WAVE FIELD

The two-layer substrate–superstrate planar waveguideconsid-
ered here is shown inFig.1,whereis the substrate height,is the
superstrate height, and , and , are the relative per-
mittivities and permeabilities of the substrate and superstrate, re-
spectively; the infinite linesource isdirectedalongthe-axis,and
is placed at at a distance above the ground plane. This
structure was proposed as an antenna geometry capable of pro-
ducing narrow radiated beams, when the dimensions and consti-
tutive parameters of both the substrate and superstrate are chosen
properly [15]. Its behavior has subsequently been interpreted as
due to the excitation of LWs supported by the structure [16].

The invariance of both the structure and excitation with re-
spect to the -direction allows us to study the TE and TM po-
larizations separately. In this paper, we will be concerned with
the TE polarization (due to an electric-line-source excitation);
however, the same approach can be used to treat the TM case as
well (due to a magnetic-line-source excitation).

In the TE case, an electric line source is present, which excites
an electromagnetic field with nonzero components, , and

. The following high-gain conditions [15] are chosen to op-
timize the design:

(1)

where is the free-space wavenumber and in order
to obtain a directive beam at an angle, due to radiation from
the first higher order TE mode ( leaky mode) [16].

The electromagnetic field at each point in space can be de-
rived from the knowledge of the electric field on the air–dielec-
tric interface ; the latter can be expressed as an inverse
Fourier transform as

(2)
where the integral is performed along the real axis, assuming in-
finitesimal losses. The spectral Green’s function occurring
in (2) is known in a simple closed form [7]:

(3)

Fig. 2. Location of the singularities of the Green’s function in the
complex k -plane. k : proper (TE ) surface-wave pole,k : LW
(TE ) improper complex pole,k : improper complex pole (the
complex-conjugate of thek pole),k : branch point. The SDPC lies
partly on the improper Riemann sheet (dotted line), and partly on the proper
Riemann sheet (solid line), which are separated by a branch cut (dashed line).

where , , and
are the transverse wavenumbers in

the air, substrate, and superstrate, respectively, assuming
nonmagnetic layers.

The spectral Green’s function has pole singularities,
which correspond to the discrete modes of the substrate–su-
perstrate structure, and branch-point singularities at
[7]. These branch points are due to the square-root function
occurring in the definition of the transverse wavenumber in
air. The choice of the square root with a negative imaginary
part corresponds to waves attenuating at infinity, and is termed
proper, while the other determination is termedimproper. The
original path stays on the proper sheet of the-plane. By
deforming the integration path in (2) in the lower half-plane
(for ) around the Sommerfeld branch cut that separates
the proper (top) and improper (bottom) Riemann sheets (see
Fig. 2), the total field (TF) on the interface can be expressed
as the sum of the following terms: the residue contribution of
the captured proper poles on the real axis, which constitutes
the bound-mode field (in our case, the field of the mode)
and the contribution of the integral around the branch cut,
which constitutes the continuous-spectrum field. By further
deforming the integration path to the steepest descent path
(SDP) (the vertical path that goes around the branch
point in Fig. 2) [6], the continuous spectrum can be expressed
as the sum of the residue contribution of the captured (phys-
ical) leaky poles (in our case, the mode, neglecting the
higher order leaky modes) and the contribution of the integral
around , which constitutes the residual-wave field [9], [10]
(called the space-wave field in [14]). The above-described field
decomposition can be written as (for )

(4)

where is the surface-wave pole, is the
LW pole; the unit-step function is equal to zero
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when is captured (the leaky mode is physical with
) and is equal to one when it

is not (the leaky mode is in the nonphysical region where
), and the residual-wave field is given by

(5)

Later on, the dependence onwill be omitted in all the relevant
symbols.

By performing the change of variable in (5),
after some manipulations, we obtain

(6)

where the resulting integrand is the
difference of the original calculated on the two parts of the

path, the proper , and the improper parts.
To achieve an approximate analytical expression for the

residual-wave field, we let tend to zero in order to obtain an
asymptotic approximation for large. Based on this assump-
tion, the following approximate form for the Green’s function
can be obtained:

(7)

where does not depend on, and is given by

(8)

where and are complex coefficients that depend on the
involved physical parameters, including frequency. The choice
of the square root depends on the Riemann sheet on which the
evaluation of the approximate Green’s function is performed. In
particular, the approximate transverse wavenumber in air can be
written as . Therefore, by examining the
sign of the imaginary part of , it is found that, if the following
condition holds:

(9)

the evaluation of the approximate Green’s function is performed
on the improper (bottom) Riemann sheet. Hence, the branch cut
in the -plane is chosen to be along the negative imaginary axis.
The principal square root is then defined to be the value on
the bottom sheet, corresponding to (9). Hence, ,
where the plus sign corresponds to the bottom sheet and the
minus sign corresponds to the top sheet.

Based on (7) and (8), the integrand in (6) can then be ex-
pressed as

(10)

where is a suitable complex coefficient, while and are
the locations of the poles of the approximate layered Green’s
function in the two-sheeted-plane, corresponding to the poles

and , shown in Fig. 2, respectively, as

(11)

By inserting (10) in (6), we obtain

(12)

The integral in this expression can be evaluated analytically in
a closed form (see the Appendix). The result is

(13)

where the imaginary part of the pole changes its sign when
the pole crosses the path in the -plane.

Through the asymptotic expansion of the function
for large values of its argument, it can be shown that the
residual-wave approximate expression of (13) has an algebraic
decay for large , which is proportional to if both poles

and are different from zero; if one of the two poles is
equal to zero, the algebraic decay is instead proportional to

. The latter case occurs at cutoff of the mode. These
conclusions are in agreement with those obtained by applying
Watson’s lemma to (6) [10].

III. A PPROXIMATECONTINUOUSSPECTRUM(ACS) FIELD AND

LEAKY-WAVE TRANSITION FUNCTIONS

On the basis of the results derived in Section II, it is pos-
sible to obtain an approximate expression for theentire contin-
uous-spectrumfield on the air–superstrate interface. The ACS
field can be obtained by summing the LW field of the
pole (when captured) and the approximate residual wave (ARW)
field of (13).

The LW field of the pole is given by (for )

(14)

Now, by assuming that (11) is valid, i.e., that the poles of the
approximate algebraic expression accurately represent the ac-
tual poles of the exact Green’s function , the residue contri-
bution from the pole can be expressed as

(15)

From (10), we then have

(16)

Therefore, the LW field of the pole can be written as

(17)



BACCARELLI et al.: EVALUATION OF CONTINUOUS SPECTRUM IN SUBSTRATE–SUPERSTRATE DIELECTRIC WAVEGUIDE 2693

With similar steps, the LW field of the pole can be written
as

(18)

Using (4), (13), (17), and (18), and taking into account that
is an odd function, the complete ACS field is then

obtained as

(19)

All of the square roots in this equation denote principal values
defined according to (9), as previously mentioned. This expres-
sion holds under the assumption that the polesand of the
approximate function accurately represent [via (11)] the
poles and of the exact Green’s function, and also
that the relevant approximate residues accurately represent the
exact ones. Under these hypotheses, it is then possible to per-
form the calculation by using the exact values of the poles and
their residues in (19). By introducing the transition function

(20)

(19) can then be written in terms of theexactpole contributions
and as

(21)

We have thus obtained an approximate closed-form expres-
sion for the continuous-spectrum field, as a sum oftwoweighted
poles contributions, and , each involving the stan-
dard transition function in which the function occurs [7]. It
should be observed that the same transition function oc-
curs forboth poles, including , which may be captured
in the integral-path deformation (it is captured when the pole is
physical), and , that is never captured. However, the sign
difference between the imaginary parts of the two poles makes
the two factors and
very different, as functions of both frequencyand longitudinal
abscissa . The consideration of the nonphysical pole is
necessary, due to the fact that it is close to thebranch point
and, therefore, influences the asymptotic evaluation [18], [19].

In the results presented below, the weighted LW expression
(21), which approximates the continuous-spectrum field by
using the exact pole locations in the evaluation of the transition

function, will be compared with the ACS field obtained by
summing the exact LW field (when captured) and the ARW
field calculated through (13), which uses the approximate
(closed-form) expressions and for the pole locations.
The ACS field is calculated using (13) and the exact LW field
instead of using (19) (which approximates the LW field) in
order to improve the calculation of the ACS.

Although the above derivation has assumed that , the
result may be generalized to arbitraryby replacing with
(this generalization is important for the calculation of the far
field).

As is well known, the total radiated far field can be obtained
by means of the Fourier transform with respect toof the total
aperture field of (2) as

(22)

where the polar coordinates in the -plane have been in-
troduced. The continuous-spectrum component of the near field
gives rise to a far-field component, which can again be obtained
through its Fourier transform as

(23)

The difference between and is due to the far-field
contribution of the bound-wave field, which radiates because of
its discontinuous derivative at the source.

By means of [20, eq. 7.4.19], one obtains

(24)

The Fourier transform of the continuous-spectrum field can then
be approximately evaluated in a closed form as

(25)

where

(26)

with are the Fourier transforms of the weighted LW
aperture fields .

It can be finally observed that, although the derivation has
been carried out by assuming that both of the polesand
are improper, the same approach can be used to treat the case
in which one of the poles is proper (this situation occurs above
the cutoff frequency of the mode). This allows us to also
accurately represent the radiative effects when the surface
wave is excited.
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(a)

(b)

Fig. 3. Comparison between the exact and approximate poles of the Green’s
function, as a function of frequency, for a structure as in Fig. 1 with" = 2:1,
� = 1; " = 10:8, � = 1, optimized for� = �=2, at a frequency
of 19.5 GHz. (a) Comparisons between exact and approximate values for the
normalized phase(� =k ) and attenuation(� =k ) constants. (b) Detail of
the transition region between theTE LW andTE bound-wave ranges. Point
labels: CP: crossing point; SP: splitting point; CO: cutoff. Curve labels: I.C.:
improper complex; I.R.: improper real; P.R.: proper real. In the inset figure, the
relevant pole locations in the steepest descent plane are also shown; the arrows
on the axes indicate the direction of pole migration as frequency increases.

IV. NUMERICAL RESULTS AND DISCUSSION

To demonstrate the validity of the proposed formulation, dif-
ferent numerical results will be presented for the structure of
Fig. 1, with parameters as in the caption of Fig. 3, in the pres-
ence of an electric source, optimized according to (1) for radi-
ation at endfire at a frequency GHz. For
this scan angle, the mode is exactly at cutoff.

In Section IV-A, results are reported for the near field; various
frequencies are considered, both inside and outside the transi-
tion region of the involved mode. In Section IV-B, the cor-
responding results for the far field are considered.

A. Near Field

To assess the accuracy of our approximate representation of
the Green’s function, we show in Fig. 3 a comparison between

(a)

(b)

Fig. 4. Electric-field magnitude on the air–dielectric interface as a function of
the normalized distancez=� for the structure in Fig. 3 at the cutoff frequency
f = 19:5GHz. (a) Exact RW and ARW. (b) ECS, ACS, and the weighted LW
field (WLW1 + WLW2). In the inset figure, the location of the relevant poles
in the steepest descent plane is shown.

the exact poles and and the approximate poles
and [see (11)] in a frequency range centered on the

cutoff frequency GHz. In particular, in Fig. 3(a), the
exact and approximate normalized phase and attenu-
ation constants are reported between 18 and 21 GHz
for both poles, where . In Fig. 3(b), a magni-
fied scale is used, and the leaky- and bound-wave regimes of
the mode are explicitly indicated, separated by the transi-
tion region. The relevant pole locations in the steepest descent
plane [6] are also reported in the inset figure.

The transition region begins at the frequency for which the
complex improper leaky pole is no longer captured by
the integral-path deformation [the crossing-point frequency la-
beled CP in Fig. 3(b)]. By increasing the frequency, the com-
plex improper pole joins its complex conjugate
[at the splitting-point frequency, labeled SP in Fig. 3(b)]; at the
SP frequency, a double improper real pole exists, which splits
into two distinct improper real poles at higher frequencies. At
the cutoff frequency [labeled CO in Fig. 3(b)], one pole becomes
proper, thus entering a bound-wave regime, while the other pole
remains improper real; here, the transition region ends. It can be
observed that, as expected, the agreement between exact and ap-
proximate dispersion curves is very good in a significant neigh-
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(a)

(b)

Fig. 5. Same as in Fig. 4, at the frequencyf = 19:493GHz, which is between
the splitting-point and cutoff frequencies.

borhood of the transition region. In fact, the exact and approxi-
mate curves are essentially coincident in Fig. 3(b).

In Fig. 4, different results are reported for the electric field
on the air–dielectric interface at the cutoff frequency

GHz. In Fig. 4(a), a comparison is shown between the exact
RW, calculated according to (5) by a numerical integration along
the path, and our ARW formulation, calculated according
to (13). The agreement is excellent, for ( is the free-space
wavelength) values down to unity, confirming that our approxi-
mate asymptotic representation is accurate and even close to the
source. In Fig. 4(b), a comparison is shown among: 1) the exact
continuous spectrum (ECS), calculated by subtracting the
bound wave from the numerically evaluated TF; 2) the ACS
evaluated according to (19) (using the approximate pole loca-
tions and ), which, in this case, is equal to the ARW alone;
and 3) our weighted LW formulation (WLW1 WLW2), cal-
culated according to (21) (using the exact pole locations
and ). Again, the agreement among the three curves is ex-
cellent. In the inset figure, the relevant location of the poles in
the steepest descent plane is reported.

In Fig. 5(a) and (b), the same comparisons are shown at a fre-
quency GHz, for which the poles and
are both real and improper [see the inset in Fig. 5(b)]. The agree-
ment between the exact RWs and ARWs is again excellent, and
our transition-function formulation (WLW1 WLW2) again
accurately represents the exact continuous-spectrum field. The

(a)

(b)

Fig. 6. Same as in Fig. 4, at the frequencyf = 19:484GHz, which is between
the crossing- and splitting-point frequencies.

same can be observed in Fig. 6(a) and (b), at a lower frequency
GHz, still inside the transition region, for which

the poles and are a complex-conjugate pair, but
is not yet captured.

By further lowering the frequency, the leaky pole is cap-
tured and directly contributes to the TF. In Fig. 7, comparisons
are made at GHz. It can be observed in Fig. 7(a)
that the ARW is still very accurate. In Fig. 7(b), a comparison
is shown among: 1) the ECS; 2) the ACS, which, in this case,
is the sum of the exact LW field and the ARW field; 3) the re-
sult (WLW1 WLW2); 4) the exact leaky field alone (LW);
and 5) the ARW field alone. In this case, neither the LW, nor the
ARW accurately represents the ECS; however, the ECS, ACS,
and WLW1 WLW2 results are almost completely superim-
posed.

Finally, in Fig. 8, the frequency GHz is considered,
for which the leaky pole is well captured and is far from the
transition region. Once again, the RW is accurately represented
by the ARW, even though its contribution to the total continuous
spectrum ECS is negligible. In fact, in this case, the ECS is well
represented by the LW (LW) alone, as can be seen in Fig. 8(b).
The result WLW1 WLW2 is still in very good agreement with
the ECS, even slightly better than the LW field alone.

On the basis of the results presented thus far, it can be ob-
served that the proposed representation of the continuous spec-
trum is very accurate over a wide frequency range, from fre-
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(a)

(b)

Fig. 7. Same as in Fig. 4, at the frequencyf = 19:46 GHz, which is below
the crossing-point frequency (the leaky-mode pole is physical). In (b), the exact
LW field and ARW are also reported.

quencies where the LW is the dominant contribution to the con-
tinuous spectrum up to frequencies near cutoff, where the RW
is instead the dominant contribution. In particular, it should be
pointed out that, in the entire transition region, our formulation
is an excellent representation of the continuous spectrum on the
interface.

It must be stressed that, to obtain such a good agreement, the
contribution oftwopoles had to be taken into account in the ap-
proximate representation of (21), where each term and

is weighted by a transition function, which depends on
both the frequency and longitudinal distance. The contribu-
tion of both poles is important even though always corre-
sponds to a nonphysical pole that is never captured by the SDP
deformation, and may or may not correspond to a phys-
ical pole, depending on frequency.

It is interesting at this point to compare our formulation with
a different empirical transition function, which is derived on the
basis of power considerations proposed in [14] to accurately
represent the radiated far field of the LW in the transition re-
gion. The transition function of [14] is real and independent
of ; moreover, it is identically zero when the poles
and are real and, therefore, it can be used only up to
the splitting-point frequency. In Fig. 9, a comparison is shown
among the ECS, exact LW, weighted LW (WLW1),
and LW weighted by the empirical power-based leaky wave

(a)

(b)

Fig. 8. Same as in Fig. 7, at the frequencyf = 18:5GHz, considerably below
the crossing-point frequency (the leaky-mode pole is well within the physical
region).

(PBLW) transition function of [14]. In particular, Fig. 9(a) is
for a frequency inside the transition region GHz ,
where the leaky pole is not captured, while Fig. 9(b) is for a
frequency at which the leaky pole is captured

GHz . It can be observed that, in Fig. 9(a), none of the
reported curves LW, WLW1, and PBLW agree with the ECS,
thus confirming that, by taking into account just one leaky pole
(i.e., the pole), it is never possible to achieve an accurate
representation of the continuous-spectrum part of the near field
when the leaky-mode pole is in the nonphysical region. When
the leaky-mode pole is physical [see Fig. 9(b)], the fields LW
and PBLW are in a reasonable overall agreement with the ECS.
However, the agreement is not nearly as good as the agreement
between the ECS and the sum of the WLW1 and WLW2 fields,
which has been demonstrated previously.

It is interesting that the agreement between the ECS and the
WLW1 field in Fig. 9(b) is not very good (although there is no
reason why there should be agreement between these two fields
since the ECS is approximated in our formulation as the sum of
the WLW1 and WLW2 fields, and not the WLW1 field alone).

By displaying the absolute value of the continuous-spectrum
field as a function of the normalized distance in a loga-
rithmic scale at different frequencies (see Fig. 10), it can be seen
that its asymptotic trend is always algebraic, with a be-
havior at all frequencies, except at cutoff, where the behavior
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(a)

(b)

Fig. 9. Comparison of the magnitudes for the ECS, exact LW field, weighted
LW field of the k pole (WLW1), and PBLW field of [14] at: (a)f =
19:484GHz (between the crossing- and splitting-point frequencies) and (b)f =
19:46 GHz (below the crossing-point frequency).

Fig. 10. Magnitude of the ACS field as a function of the normalized distance
z=� at different frequencies (corresponding to those considered in Figs. 4–9),
plotted on a logarithmic scale.

is proportional to . Further, it can be noticed that, when
the LW pole is captured (for GHz and 18.5 GHz),
the field has an exponential decay near the source; at 18.5 GHz,
after the LW field has decayed to values comparable to those
of the residual-wave field, the two fields interfere giving rise to
oscillations; however, for higher values, the residual-wave
field is always dominant, determining the algebraic asymptotic
decay of the total continuous-spectrum field.

(a)

(b)

Fig. 11. (a) Power radiation patterns as a function of the angle� (measured
from broadside) for the structure in Fig. 4(f = f = 19:5 GHz). Legend:
TF: total field; ACS: approximate continuous spectrum; WLW1+ WLW2:
weighted LW form of the ACS field. (b) Detail of the angular range near
endfire.

B. Far Field

The same comparisons already shown for the electric field on
the air–superstrate interface are reported in the subsequent fig-
ures for the radiated far field. In Fig. 11(a), the power radiation
pattern at GHz is shown for the TF, calculated
by Fourier transforming the total aperture field, the radiation
pattern obtained from Fourier transforming the ACS, and the
radiation pattern obtained from Fourier transforming the field
(WLW1 WLW2), according to (25). The agreement is excel-
lent near the main-beam direction, which occurs in this case at
endfire , as is more clearly visible in the enlarged plot
of Fig. 11(b).

In Fig. 12(a) and (b), the same comparisons are shown at
GHz and GHz, respectively, both in-

side the transition region. Again, the agreement is excellent near
the main-beam direction, which, in these cases, is very close to
the endfire . In Fig. 13(a) and (b), the same com-
parisons are reported at GHz and GHz,
respectively, both below the crossing point; in this case, we also
show the radiation patterns of the exact LW field. It can be seen
that, at GHz, the LW pattern does not accurately
represent the TF pattern, while both ACS and WLW1WLW2
do; in this case, the main-beam direction occurs at . At
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(a)

(b)

Fig. 12. Same as Fig. 11(b) at: (a)f = 19:493 GHz (between splitting-point
and cutoff frequencies) and (b)f = 19:484 GHz (between the crossing- and
the splitting-point frequencies).

GHz, the LW pattern is now in good agreement with
the TF pattern; again, however, our formulation is even more
accurate over a wide angular range around the main-beam di-
rection, which, in this case, occurs at .

In all the examined cases, our formulation yields accurate re-
sults for the far field, with the exception of the broadside re-
gion. However, in the latter angular range, the radiated power is
considerably less than that radiated in the main-beam direction;
the discrepancy between the TF and our formulation (WLW1

WLW2) is due to three distinct effects, i.e., the bound-wave
contribution, higher order leaky-pole contributions, and the dif-
ference between the exact and ARW fields, which is appreciable
for values below unity.

In Fig. 14, a comparison is shown among the far-field patterns
based on the TF, exact LW, weighted LW (WLW1),
and weighted LW using the empirical power-based for-
mulation of [14] (PBLW) at GHz [as shown in
Fig. 14(a)] and [as shown in Fig. 14(b)] at GHz. As
for the corresponding results in the near field (see Fig. 9), at both
frequencies, neither LW, nor WLW1 agrees with the TF. How-
ever, the PBLW field accurately represents the radiated far field,
as already observed in [14]. Therefore, although the PBLW for-
mulation is not a good (or even a reasonable) approximation
to the aperture field, it nevertheless provides a good approxi-
mation to the total radiated far field. This is not surprising. In

(a)

(b)

Fig. 13. Same as Fig. 11(b) at: (a)f = 19:46 GHz and (b)f = 18:5 GHz
(both below the crossing-point frequency, where the leaky-mode pole is
physical). For these frequencies, the radiation pattern of the exact LW field is
also reported.

fact, the transition function in [14] was thought of as the neces-
sary weighting factor that, when multiplied by the leaky-mode
pole residue, yielded a leaky-mode aperture field whose trans-
form matched well (as well as possible) with the total far field.
However, it is worth pointing out that the PBLW far-field for-
mulation can be used only in the presence of complex leaky
poles, i.e., for frequencies up to the splitting point, as it does
not provide any useful result in that part of the spectral-gap re-
gion where the poles are improper real modes (corresponding
to a main-beam direction very close to endfire). In contrast, the
radiation pattern obtained from the proposed WLW1WLW2
formulation developed here remains accurate throughout the en-
tire spectral-gap region.

V. CONCLUSIONS

An original closed-form approximate expression for the
continuous-spectrum aperture field has been formulated for a
two-layer dielectric leaky-mode waveguide excited by an elec-
tric line source. The continuous-spectrum field is represented
in the form of a weighted sum of two leaky-pole contributions:
one corresponds to the leaky mode that forms the physical
radiating beam, and the other corresponds to the nonphys-
ical complex-conjugate pole. Numerical results show that the
closed-form approximation is accurate for the field on the
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(a)

(b)

Fig. 14. Comparisons of the radiation patterns for the TF, exact LW field,
weighted LW field of thek pole (WLW1), and PBLW field of [14] at:
(a) f = 19:484 GHz (between the crossing-point and the splitting-point
frequencies) and (b)f = 19:46 GHz (below the crossing-point frequency).

aperture in theentire transition regionof the relevant leaky
mode. This new approximate closed-form expression for the
continuous spectrum provides the opportunity to analytically
explore the nature of the fields produced by a practical source
in the transition region, as the leaky-mode pole moves through
the spectral-gap region.

A closed-form approximate expression for the far field of the
source was also obtained by analytically Fourier transforming
the new closed-form approximate expression for the aperture
field. The approximate far field was seen to be in excellent
agreement with the exact far field. This new approximate for-
mula for the far field was compared with one derived previ-
ously, which had been based on an empirical weighting of the
leaky-mode aperture field. Although both approximations work
well for a complex leaky mode, the new formula derived here
works well throughout the entire spectral-gap region, including
the region where the leaky mode has become an improper real
mode. Furthermore, the formula developed here has been ob-
tained from rigorous calculations, and not from empirical con-
siderations.

Although formulated for a simple two-layer dielectric struc-
ture, many of the conclusions should remain valid for sources
on practical microwave-integrated-circuit structures that sup-
port leaky modes.

APPENDIX

Here, the following integral will be evaluated in a closed
form:

(A.1)

By letting , we have

(A.2)

and, therefore, the main task consists in the evaluation of the
following integral:

(A.3)

where . Through the variable substitution ,
where the square-root function is assumed to be evalu-
ated according to the principal-value determination (with

), we have

(A.4)

By means of [20, eq. 7.1.4], we can write

(A.5)

where with , and

(A.6)

In accordance with our previous definition (9) of the principal
branch of the square-root function (denoted as), we have

, where the minus sign is chosen ifis located in the
fourth quadrant on the complex plane; otherwise the plus sign
is chosen.

From (A.5) and (A.6), we then have

(A.7)

Taking into account the relation betweenand , and the fact
that the function is odd, we obtain

(A.8)
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where the lower sign is chosen iflies in the fourth quadrant of
the complex plane, otherwise the upper sign has to be chosen.
Recalling the definition of , we have

(A.9)

With reference to the poles and of (11), it can easily be
shown that

(A.10)

(A.11)

where the imaginary part of the pole changes sign as the pole
crosses the SDP.

REFERENCES

[1] V. V. Shevchenko, Continuous Transitions in Open Waveg-
uides. Boulder, CO: Golem Press, 1971.

[2] R. E. Collin, Field Theory of Guided Waves. New York: IEEE Press,
1991, ch. 9.

[3] T. Rozzi and M. Mongiardo, Open Electromagnetic Wave-
guides. London, U.K.: IEE Press, 1997.

[4] G. W. Hanson and A. B. Yakovlev,Operator Theory for Electromag-
netics. New York: Springer-Verlag, 2001.

[5] N. Marcuvitz, “On field representations in terms of leaky modes or
eigenmodes,”IRE Trans. Antennas Propagat., vol. AP-4, pp. 192–194,
July 1956.

[6] T. Tamir and A. A. Oliner, “Guided complex waves. Part I: Fields at an
interface. Part II: Relation to radiation patterns,”Proc. Inst. Elect. Eng.,
vol. 110, pp. 310–334, Feb. 1963.

[7] L. Felsen and N. Marcuvitz, Radiation and Scattering of
Waves. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[8] L. B. Felsen, “Real spectra, complex spectra, compact spectra,”J. Opt.
Soc. Amer. A, Opt. Image Sci., vol. 3, no. 4, pp. 486–496, Apr. 1986.

[9] M. J. Freire, F. Mesa, C. Di Nallo, D. R. Jackson, and A. A. Oliner,
“Spurious transmission effects due to the excitation of the bound mode
and the continuous spectrum on stripline with an air gap,”IEEE Trans.
Microwave Theory Tech., vol. 47, pp. 2493–2502, Dec. 1999.

[10] D. R. Jackson, F. Mesa, M. J. Freire, D. P. Nyquist, and C. Di Nallo,
“An excitation theory for bound modes, leaky modes, and residual-wave
currents on stripline structures,”Radio Sci., vol. 35, no. 2, pp. 495–510,
Mar.–Apr. 2000.

[11] P. Lampariello, F. Frezza, and A. A. Oliner, “The transition region
between bound-wave and leaky-wave ranges for a partially dielec-
tric-loaded open guiding structure,”IEEE Trans. Microwave Theory
Tech., vol. 38, pp. 1831–1836, Dec. 1990.

[12] F. Mesa, D. R. Jackson, and M. J. Freire, “Evolution of leaky modes
on printed-circuit lines,”IEEE Microwave Theory Tech., vol. 50, pp.
94–104, Jan. 2002.

[13] C. Di Nallo, F. Mesa, and D. R. Jackson, “Excitation of leaky modes on
multilayer stripline structures,”IEEE Trans. Microwave Theory Tech.,
vol. 46, pp. 1062–1071, Aug. 1998.

[14] H. Ostner, J. Detlefsen, and D. R. Jackson, “Radiation from one-di-
mensional dielectric leaky-wave antennas,”IEEE Trans. Antennas Prop-
agat., vol. 43, pp. 331–339, Apr. 1995.

[15] D. R. Jackson and N. G. Alexópoulos, “Gain enhancement methods for
printed circuit antennas,”IEEE Trans. Antennas Propagat., vol. AP-33,
pp. 976–987, Sept. 1985.

[16] D. R. Jackson and A. A. Oliner, “A leaky-wave analysis of the high-gain
printed antenna configuration,”IEEE Trans. Antennas Propagat., vol.
36, pp. 905–910, July 1988.

[17] N. Bleistein and R. A. Handelsman,Asymptotic Expansions of Inte-
grals. New York: Dover, 1986.

[18] M. Marin, S. Barkeshli, and P. H. Pathak, “Efficient analysis of planar
geometries using a closed-form asymptotic representation of the
grounded dielectric slab Green’s function,”IEEE Trans. Microwave
Theory Tech., vol. 37, pp. 669–679, Apr. 1989.

[19] M. Marin and P. H. Pathak, “An asymptotic closed-form representation
for the grounded double-layer surface Green’s function,”IEEE Trans.
Antennas Propagat., vol. 41, pp. 1357–1366, Nov. 1992.

[20] Handbook of Mathematical Functions, 9th ed., M. Abramowitz and I.
A. Stegun, Eds., Dover, New York, 1972.

Paolo Baccarelli (S’96–M’01) received the Laurea
degree in electronic engineering and the Ph.D. degree
in applied electromagnetics from the “La Sapienza”
University of Rome, Rome, Italy, in 1996 and 2000,
respectively.

In 1996, he joined the Department of Electronic
Engineering, “La Sapienza” University of Rome.
From April 1999 to October 1999, he was a Visiting
Scholar with the University of Houston, Houston,
TX. His research interests concern analysis and
design of uniform and periodic planar LW antennas,

numerical methods, and theoretical studies on LWs in anisotropic media.

Paolo Burghignoli (S’98–M’01) was born in Rome,
Italy, on February 18, 1973. He received the Laurea
degree(cum laude)in electronic engineering and
Ph.D. degree in applied electromagnetics from the
“La Sapienza” University of Rome, Rome, Italy, in
1997 and 2001, respectively.

He is currently with the Department of Electronic
Engineering, “La Sapienza” University of Rome.
His scientific interests include analysis and design
of planar LW antennas, general numerical methods
for the analysis of passive guiding and radiating

microwave structures, and inverse scattering theory.

Fabrizio Frezza (S’87–M’90–SM’95) received the
Laurea degree (cum laude) in electronic engineering
and Doctorate degree in applied electromagnetics
from the “La Sapienza” University of Rome, Rome,
Italy, in 1986 and 1991, respectively.

In 1986, he joined the Electronic Engineering
Department, “La Sapienza” University of Rome,
where he has been a Researcher (1990–1998), a tem-
porary Professor of electromagnetics (1994–1998),
and, since 1998, an Associate Professor. His main
research activity concerns guiding structures,

antennas, and resonators for microwaves and millimeter waves, numerical
methods, scattering, optical propagation, plasma heating, and anisotropic
media.

Dr. Frezza is a member of Sigma Xi, the Electrical and Electronic Italian As-
sociation (AEI), the Italian Society of Optics and Photonics (SIOF), the Italian
Society for Industrial and Applied Mathematics (SIMAI), and the Italian So-
ciety of Aeronautics and Astronautics (AIDAA).

Alessandro Galli (S’91–M’96) received the Laurea
degree in electronic engineering and Ph.D. degree
in applied electromagnetics from the “La Sapienza”
University of Rome, Rome, Italy, in 1990 and 1994,
respectively.

In 1990 he joined the Electronic Engineering
Department, “La Sapienza” University of Rome,
and became an Assistant Professor in 2000 and an
Associate Professor in 2002. He currently teaches
Electromagnetic Fields for Telecommunications
Engineering. His scientific interests mainly involve

electromagnetic theory and applications, particularly regarding the analysis and
design of passive devices and antennas (dielectric and anisotropic waveguides
and resonators, LW antennas, etc.) for microwaves and millimeter waves. He
is also active in bioelectromagnetics (modeling of interaction mechanisms
with living matter, health-safety problems for low-frequency applications and
mobile communications, etc.).

Dr. Galli was the recipient of the 1994 and 1995 IEEE Microwave Theory and
Techniques Society (IEEE MTT-S) Quality Presentation Recognition Award.



BACCARELLI et al.: EVALUATION OF CONTINUOUS SPECTRUM IN SUBSTRATE–SUPERSTRATE DIELECTRIC WAVEGUIDE 2701

Giampiero Lovat (S’02) was born in Rome, Italy,
on May 31, 1975. He received the Laurea degree
(cum laude) in electronic engineering from the “La
Sapienza” University of Rome, Rome, Italy, in 2001,
and is currently working toward the Ph.D. degree
in applied electromagnetics at the “La Sapienza”
University of Rome.

His scientific interests include theoretical and
numerical studies on leakage phenomena in planar
structures and inverse scattering theory.

David R. Jackson (S’83–M’84–SM’95–F’99) was
born in St. Louis, MO, on March 28, 1957. He re-
ceived the B.S.E.E. and M.S.E.E. degrees from the
University of Missouri, Columbia, in 1979 and 1981,
respectively, and the Ph.D. degree in electrical engi-
neering from the University of California at Los An-
geles (UCLA), in 1985.

From 1985 to 1991, he was an Assistant Professor
in the Department of Electrical and Computer Engi-
neering, University of Houston, Houston, TX. From
1991 to 1998, he was an Associate Professor in the

same department and, since 1998, he has been a Professor. His current research
interests include microstrip antennas and circuits, LW antennas, leakage and
radiation effects in microwave integrated circuits, periodic structures, electro-
magnetic compatibility (EMC), and bioelectromagnetics. He is an Associate
Editor for theInternational Journal of RF and Microwave Computer-Aided En-
gineering. He was an Associate Editor forRadio Science.

Dr. Jackson is the chapter activities coordinator for the IEEE Antennas and
Propagation Society (IEEE AP-S) and the chair of the Technical Activities Com-
mittee for URSI, U.S. Commission B. He is also a distinguished lecturer for the
IEEE AP-S Society. He was an associate editor for the IEEE TRANSACTIONS ON

ANTENNAS AND PROPAGATION. He is a past member of the IEEE AP-S Admin-
istrative Committee (AdCom).


	MTT024
	Return to Contents


